
ar
X

iv
:q

-b
io

.B
M

/0
41

00
31

 v
1 

  2
6 

O
ct

 2
00

4
Lattice tube model of proteins
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We present a new lattice model for proteins that incorporates a tube-like anisotropy by introducing
a preference for mutually parallel alignments in the conformations. The model is demonstrated to
capture many aspects of real proteins.
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There have been several physics-based attempts to
distil the essential features of the protein problem and
notable success in capturing many of the key ingredi-
ents has been achieved using lattice models [1]. Such
coarse-grained descriptions allow a virtually exact anal-
ysis of many properties and provide a useful framework
for understanding experimental results. Indeed, valuable
progress has been made within the simplified description
of a lattice model with just two types of amino acids
denoted by H and P representing hydrophobic and po-
lar behaviors. The principal theme of this letter is to
present a new lattice model of proteins, which takes into
account a previously overlooked key attribute of chain
molecules – the context of amino acids within a chain.
We benchmark the behavior of this model with the well-
studied HP lattice model and show that the new model
faithfully captures several attributes of real proteins.

There are clear hints, manifested by the many com-
mon characteristics of proteins [2], that proteins may be
simpler than one might expect. Protein structures are
constructed in a modular manner from common building
blocks – helices, hairpins and sheets connected together
by tight turns. Further, the total number of distinct pro-
tein folds seems to be of the order of just a few thousand
[3].

The simplest model of an unconstrained object is a
hard sphere. A collection of hard spheres exhibits both
fluid and crystalline phases on changing the volume frac-
tion. When objects are tethered together in the form of
a chain, it is no longer appropriate to consider them as
spheres. There is a special direction that one may asso-
ciate with each object which is tangent to the chain and
is defined by the adjoining particles along the chain. It is
therefore more appropriate to model the objects making
up a chain by means of discs or coins, for which the heads-
to-tails direction is distinct from the two other directions.
This picture of tethered coins leads to a tube-like descrip-
tion of a chain molecule [2]. Just as symmetry plays a
key role in determining the nature of ordering of uncon-
strained particles (the phases associated with a collec-
tion of spheres are vastly simpler than the liquid crystal
phases of anisotropic objects), the anisotropy inherent in
a tube leads to new behavior. Recent work [2] has shown

that the tube picture can be used to understand the con-
ventional polymer phases and the novel phase of matter
used by Nature to house protein native state structures
in a unified way and for the development of a framework
for understanding the common character of proteins.

There are three key features of a tube description
that one ought to incorporate in a lattice model: self-
intersections of a tube are not allowed, the local radius
of curvature of a tube can be no smaller than the tube
radius and in a compact state, there is a tendency for
nearby tube segments to be parallel (indeed both helices
and sheets have tube segments alongside and parallel to
each other leading to a cooperative placement of hydro-
gen bonds [4]). The first two features are built into a
model of a self-avoiding chain on a lattice. Our focus
here is on considering the effects of introducing the third.

In order to illustrate the key idea, we will consider a 16
amino acid (aa) self-avoiding chain on a square lattice.
There have been numerous previous studies [1] of this
system within the standard HP model context and its
generalizations [5]. In the standard HP model, one as-
cribes a favorable energy −1 for a HH contact (two H aa
which are not next to each other in sequence but sit next
to each other in the lattice) and zero energy otherwise.
Here, in addition we pay attention to the context that
the contact occurs in. Figure 1 illustrates three distinct
types of contacts (denoted by an index m) depending on
the degree to which the segments containing the aa in
contact are parallel to each other. The energy assigned
to a HH contact of type m in the Tube HP (THP) model
is denoted by em. In what follows, let us choose em to be
−3, −2, and −1 for m=3, 2, and 1 respectively thereby
favoring the parallelism of nearby segments. In the stan-
dard HP model em = −1 independent of m.

In order to understand the role of sequence heterogene-
ity, it is useful to consider a generalized model in which
the energies are described by

E =
∑

i<j

em ∆(i− j, m) [δi,Hδj,H + (1− ǫ) Dij ] , (1)

where

Dij = (δi,Hδj,P +δi,P δj,H +δi,P δj,P ) = 1 − δi,Hδj,H .
(2)

Here, ∆(i − j, m) is equal to 1 if the amino acids i and
j form a contact and 0 otherwise. When such a contact
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FIG. 1: Panel a: Sketch of three contact environments in the
THP model. The dashed line denotes a contact. Panel b: The
optimal structure for the THP model. The circled represent
the hydrophobic core and have H aa in them more than 87 %
of the time for the sequences that fold into this conformation
when ǫ = 1.

exists, the energy of attraction associated with it depends
on the index m. δi,H is defined to be equal to 1 if amino
acid i is hydrophobic and 0 if it is polar. Similarly, δi,P =
1− δi,H is equal to 1 if amino acid i is polar. Depending
on the choice of the em parameters, one obtains the HP
or THP models. The limiting cases correspond to ǫ = 1,
i.e. the ’standard’ THP or HP models, and ǫ = 0 – the
case of a homopolymer made of H amino acids.

For the 16-aa chain, all sequences and all possible con-
formations can be enumerated exactly. There are in-
teresting differences in the energy landscape of the HP
and the THP models. One may determine the sequences
which have a unique ground state and the number of
distinct designable conformations, which house these se-
quences, as a function of ǫ (see inset of Figure 2). For a
homopolymer (ǫ=0), the HP model has no designable
structure – all compact conformations are degenerate
and have the same energy. Thus in the absence of se-
quence specificity, there is no pre-selection of protein-like
structures among compact conformations. Thus in the
absence of sequence specificity, there is no protein-like
behavior. When a weak heterogeneity is introduced by
turning on a small ǫ, the HP energy landscape becomes
rugged and each of the 69 maximally compact conforma-
tions become designable but with a weak thermodynamic
stability. Thus the funnel-like energy landscape [6] arises
only on turning on the full degree of sequence hetero-
geneity.

This is in sharp contrast to the behavior of the THP
model – here, even for a homopolymer, one obtains a
unique ground state, akin to either a helix or a sheet
in two dimensions (see Figure 1), selected not by con-
siderations of the chemistry of the aa but rather by the
overarching principles of geometry and symmetry. Inter-

FIG. 2: Rank ordered values of the number of sequences that
fold into the given structure for all of the designable structures
at ǫ = 1. The inset shows the number of designable structures
as a function of ǫ (see text).

estingly, in the limit of small ǫ, all 216=65536 sequences
have a unique ground state in the THP model and none
in the HP model. When ǫ = 1, one obtains 10579 and
1539 designable sequences in the THP and HP models re-
spectively (see Figure 2) folding into 684 and 456 distinct
folded structures. Furthermore, the number of sequences
folding into the most designable structure are 637 and 26
for the two models.

The thermodynamic stability of a sequence is char-
acterized by the folding transition temperature, Tf , at
which the equilibrium probability of being in the native
state conformation is equal to 1

2
. The spread in the val-

ues of Tf is nearly three times larger in the THP model
than in the HP case. The most stable THP sequence
folds into the structure shown in Figure 1b, whereas the
most stable HP sequence folds to a structure which is
not maximally compact. In order to describe the folding
kinetics, we take a sequence at a temperature equal to
its Tf value and consider 10 batches of 101 trajectories
and determine the first passage time to the native state
starting from an unfolded conformation. The time evolu-
tion [7] is a Monte Carlo process which satisfies detailed
balance. The kinetic moves consist of single bead moves
(the kink flips and rotations of the terminal segments)
with probability 0.2 and of two bead “crankshaft” moves
with probability 0.8. A median folding time is deter-
mined for each batch and averaged over all batches to
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yield a measure of the folding time, tfold. Our calcula-
tions were carried out for 12 sequences in each model (the
top 10 sequences in Tf values and the sequences ranked
20 and 30). In all cases, the THP model exhibits more
rapid two-state folding than the HP model with the ratio
of the folding times for the 12 sequences ranging between
0.10 and 0.47.

The framework of evolution in life works through both
the DNA molecule and the functionally useful protein
molecule. Mutations of the DNA molecule lead to the
possibility of new proteins, whose selection, in turn, leads
to an enhancement of the number of such DNA molecules.
As pointed out by Maynard-Smith[8], as the sequence un-
dergoes mutation, there must be a continuous network
that the mutated sequences can traverse without pass-
ing through any intermediaries that are non-functioning.
Thus, one seeks a connected network in sequence space
for evolution by natural selection to occur. There is con-
siderable evidence that much of evolution is neutral [9].

We have investigated the topology of connections [10]
between the designable structures resulting from point
mutations in the sequence (the change of one aa from
H to P or vice versa). Indeed, while one has a “ran-
dom walk” in sequence space that forms a connected net-
work, there is no similar continuous variation in structure
space. When ǫ = 1, 39.3 % or 605 of the HP sequences
do not belong to the connected network envisioned by
Maynard-Smith in sharp contrast to the THP model for
which only 13 of the 10579 sequences, i.e. 0.12 %, do not
belong to the network. The THP model is vastly better
connected than the HP model, as illustrated in Figure 3.
The former exhibits approximate scale-free behavior [11]
while the latter is more akin to a random network with
low mean coordination number (Figure 4).

In summary, we find that the tube lattice model cap-
tures many of the key characteristics of protein behavior
in a superior way compared to conventional lattice mod-
els. The key advantage of studying a tube on a lattice
compared to a more realistic continuum analysis [2] is
that one can often carry out an exact analysis for short
chains and obtain insights on real protein behavior. As
an illustration, we conclude with a simple analysis of a
few hundred proteins [12] to determine the propensity of
amino acid pairs in contact [13] to be in specific environ-
ments characterized by the m-index introduced above.
Specifically, we look at the type of contact between aa k
and aa l along the sequence and categorize it in the fol-
lowing manner: the specific aa pair involved in the con-
tact, their sequence separation s =| k− l | equal to 2, 3, 4
or greater than 4 and the number of contacts m between
the two groups of aa (k − 1, k, k + 1) and (l − 1, l, l + 1)
which can range between 1 and 9. (The geometry of the
lattice model in two dimensions allow for only three val-
ues 1, 2 or 3 of the contact environment index m.) We

FIG. 3: Network topologies (using Pajek) of designable struc-
tures resulting from point mutations in the sequence. The top
and bottom panels are for the THP and HP models respec-
tively.

have determined

χ2(k, l, s, m) =
[n(k, l, s, m) − p(k, l, s, m)]2

p(k, l, s, m)
. (3)

Here n is the number of contacts and p the expected num-
ber of contacts based on chance: p(k, l, s, m) = aq(k, l, s),
where q is the number of the specific aa pairs at distance
s and a =

∑
kl n(k, l, s, m)/

∑
kl q(k, l, s). A large value

of χ2 corresponds to a strong signal that aa k and aa
l prefer to make or avoid a contact in the environment
defined by the s and m indices (Table 1) and would be
useful in the development of scoring functions for protein
structure recognition [12].

The tube idea reveals a deep underlying simplicity in
the protein problem. In standard approaches, the se-
quence of amino acids is believed to play a key role in
sculpting the free energy landscape and determining its
native state structure. Here, instead, the free energy
landscape is sculpted predominantly by symmetry and
geometry and the sequence plays a vital role in the se-

lection of the native state from a predetermined menu.
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FIG. 4: Probability distribution, P (z), of the effective co-
ordination number for the network of designable structures
shown in Fig. 3. The inset is a plot of the same data in
a log-log scale (the top panel) for the THP model and in a
log-linear scale for the HP model. The results illustrate the
approximate validity of P (z) ∼ z−γ and P (z) ∼ exp−z/ξ for
the THP and HP models respectively.

Unlike sequences and functionalities, which are shaped
by the powerful forces of evolution, the menu of putative
native state structures is immutable and is determined
by physical law. Indeed, this fixed backdrop provides the
initial basis for selection in molecular evolution. DNA
which make proteins that are able to fold readily into
one of the predetermined folds pass the initial screening.
An additional level of filtering completes the selection
process of proteins that are not only good folders but are
also able to interact well with ligands and other proteins
and play a useful functional role.
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TABLE CAPTION
Table I. The list of aa pairs with χ2(k, l, s, m) larger than

65. In the ensemble of proteins that were studied, there are

97 918, 97 525, 97132, and 17 506 983 aa pairs with s equal

to 2, 3, 4, and gretaer than 4 respectively. 336 110 of the

pairs form contacts: 22.1, 11.9, 10.4, and 55.6 % of them

correspond to s=2, 3, 4, and > 4 respectively. For each s,

the distribution of the contacts over the contact type m is

uneven. For s=2 and 3, most of the contacts, 36.5 and 59.8

% respectively, corresponds to m=8. These contacts typically

correspond to interactions within helices. Amino acids with

long and/or forked side groups (L, K, Q, R, E) are more likely

to form local contacts with a large m. On the other hand,

the smallest amino acid, G, is much less likely to form such

contacts, as evidenced by the aversion in the pairs G-G, G-

P, and G-S for s=2 and m=8. The propensity of aa A to

participate in short range contacts with a large m (also for

s=4) is also due to its size: A is small enough to allow for

participation in conformational twists, but it is sufficiently

big to facilitate formation of many contacts. For s=4, 67.3 %

of the contacts ocupy m=6. Finally, for s > 4, 45.4 % of the

contacts occupy m=1 and 2 almost equally. These contacts

usually correspond to links between secondary structures, e.g.

between two helices or between a helix and a turn, through

a pair of hydrophobic amino acids which are unlikely to be a

G. The C-C covalent attraction results in non-local contacts

over a range of m values.

Table I

aa pairs attraction/aversion s m

V-I attraction 2 4
AL-AEQKR attraction 2 8
G-PSG aversion 2 8
————————-—————————— ———— ——
A-AQIR L-ALQ attraction 3 8
————————-—————————— ———— ——
A-A L-LA E-R attraction 4 6
G-V aversion 4 6
————————-—————————— ———— ——
L-IFVLMWY attraction >4 1
V-IFVMW F-FWY attraction >4 1
I-FIWM C-C M-FYattraction >4 1
A-G G-DST aversion >4 1
L-IFVLMWY W-Y attraction >4 2
VI-IF F-FW C-C attraction >4 2
L-LF I-V C-C attraction >4 3
C-C attraction >4 4
V-VI I-I attraction >4 5
V-LVIFT I-I attraction >4 6


